The Large Sky Area Multi-Object Fiber Spectroscopic Telescope in China

The Large Sky Area Multi-Object Fiber Spectroscopic Telescope

The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) project as one of the National Major Scientific Projects undertaken by the Chinese Academy of Science. LAMOST is a quasi-meridian reflecting Schmidt telescope laid down on the ground with its optical axis fixed in the meridian plane. The aperture of LAMOST is 4m, enabling it to obtain the spectra of objects as faint as down to 20m.5 with an exposure of 1.5 hour. Its focal plane is 1.75m in diameter, corresponding to a 5° field of view, may accommodate as many as 4000 optical fibers. So the light from 4000 celestial objects will be led into a number of spectrographs simultaneously. Thus the telescope will be the one that possesses the highest spectrum acquiring rate in the world.

LAMOST adopts the active optics technique both for thin mirror and segmented mirror on the Schmidt corrector MA, as well as the parallel controllable fiber positioning system. With these new concepts and design, LAMOST is expected to be a unique astronomical instrument in combining a large clear aperture and wide field of view.

The engineering of LAMOST consists of eight subsystems, optic system, active optics and mirror supporting system, mounting and tracking system, telescope control system, focal plane instruments, telescope enclosure, observatory control and data processing, and input catalogue and survey strategy. The project will come into operation at the end of 2007.

The telescope will be located at the Xinglong Observing Station of National Astronomical Observatories, Chinese Academy of Sciences. As a national facility, LAMOST will be opened to the whole Chinese astronomical community. Along with the completion of the construction at the beginning of the 21st century, LAMOST will bring Chinese astronomy to a leading position in the large scale observations of optical spectra, and in the research field of wide field astronomy.